Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.485
Filtrar
1.
Redox Rep ; 29(1): 2341470, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629504

RESUMO

Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.


Assuntos
Antineoplásicos , Hesperidina , Ototoxicidade , Humanos , Cisplatino/toxicidade , Hesperidina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ototoxicidade/tratamento farmacológico , Ototoxicidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Antineoplásicos/toxicidade , Células Ciliadas Auditivas/metabolismo , Apoptose
2.
Sci Rep ; 14(1): 7862, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570547

RESUMO

The small muscle protein, X-linked (SMPX) gene encodes a cytoskeleton-associated protein, highly expressed in the inner ear hair cells (HCs), possibly regulating auditory function. In the last decade, several mutations in SMPX have been associated with X-chromosomal progressive non syndromic hearing loss in humans and, in line with this, Smpx-deficient animal models, namely zebrafish and mouse, showed significant impairment of inner ear HCs development, maintenance, and functioning. In this work, we uncovered smpx expression in the neuromast mechanosensory HCs of both Anterior and Posterior Lateral Line (ALL and PLL, respectively) of zebrafish larvae and focused our attention on the PLL. Smpx was subcellularly localized throughout the cytoplasm of the HCs, as well as in their primary cilium. Loss-of-function experiments, via both morpholino-mediated gene knockdown and CRISPR/Cas9 F0 gene knockout, revealed that the lack of Smpx led to fewer properly differentiated and functional neuromasts, as well as to a smaller PLL primordium (PLLp), the latter also Smpx-positive. In addition, the kinocilia of Smpx-deficient neuromast HCs appeared structurally and numerically altered. Such phenotypes were associated with a significant reduction in the mechanotransduction activity of the neuromast HCs, in line with their positivity for Smpx. In summary, this work highlights the importance of Smpx in lateral line development and, specifically, in proper HCs differentiation and/or maintenance, and in the mechanotransduction process carried out by the neuromast HCs. Because lateral line HCs are both functionally and structurally analogous to the cochlear HCs, the neuromasts might represent an invaluable-and easily accessible-tool to dissect the role of Smpx in HCs development/functioning and shed light on the underlying mechanisms involved in hearing loss.


Assuntos
Perda Auditiva , Sistema da Linha Lateral , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sistema da Linha Lateral/metabolismo , Mecanotransdução Celular , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/genética , Proteínas Musculares/metabolismo
3.
Elife ; 122024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483314

RESUMO

Mammals harbor a limited number of sound-receptor hair cells (HCs) that cannot be regenerated after damage. Thus, investigating the underlying molecular mechanisms that maintain HC survival is crucial for preventing hearing impairment. Intriguingly, Pou4f3-/- or Gfi1-/- HCs form initially but then rapidly degenerate, whereas Rbm24-/- HCs degenerate considerably later. However, the transcriptional cascades involving Pou4f3, Gfi1, and Rbm24 remain undescribed. Here, we demonstrate that Rbm24 expression is completely repressed in Pou4f3-/- HCs but unaltered in Gfi1-/- HCs, and further that the expression of both POU4F3 and GFI1 is intact in Rbm24-/- HCs. Moreover, by using in vivo mouse transgenic reporter assays, we identify three Rbm24 enhancers to which POU4F3 binds. Lastly, through in vivo genetic testing of whether Rbm24 restoration alleviates the degeneration of Pou4f3-/- HCs, we show that ectopic Rbm24 alone cannot prevent Pou4f3-/- HCs from degenerating. Collectively, our findings provide new molecular and genetic insights into how HC survival is regulated.


Assuntos
Terapia Genética , Fatores de Transcrição , Animais , Camundongos , Animais Geneticamente Modificados , Fatores de Transcrição/genética , Células Ciliadas Auditivas , Som , Mamíferos , Proteínas de Homeodomínio , Fator de Transcrição Brn-3C/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA
4.
Otolaryngol Head Neck Surg ; 170(5): 1421-1429, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314899

RESUMO

OBJECTIVE: Verification that blind and excessive use of antioxidants leads to antioxidant stress which exacerbates cochlear cell damage. STUDY DESIGN: Basic research. SETTING: The Third Affiliated Hospital of Sun Yat-Sen University. METHODS: We compared and quantified hair cell-like house ear institute-organ of corti 1 (HEI-OC1) cell density, cell viability, and apoptosis caused by different concentrations of N-acetylcysteine (NAC) via Hoechst staining, Cell Counting Kit 8, Hoechst with propidium iodide staining, and Annexin V with propidium iodide (PI) staining. Apoptosis induced by high concentrations of M40403 and coenzyme Q10 in cochlear explants was analyzed and compared by cochlear dissection and activated caspase 3 labeling. RESULTS: With the increase of NAC concentration (0-1000 µmol/L), cell density decreased consequently and reached the lowest at 1000 µmol/L (****P ≤ .0001). Cell viability is also declining (**P < .01). The number of Annexin V-fluorescein isothiocyanate-labeled cells and PI-labeled cells increased with increasing NAC concentration after treatment of HEI-OC1 cells for 48 hours. The proportion of apoptotic cells also rose (*P < .05, **P < .01). Cochlear hair cells (HCs) treated with low concentrations of M40403 and coenzyme Q10 for 48 hours showed no damage. When the concentrations of M40403 and coenzyme Q10 were increased (concentrations>30 µmol/L), HC damage began, followed by a dose-dependent increase in HC loss (*P < .001, **P < .0001). Activated caspase-3 was clearly apparent in cochlear explants treated with 50 µmol/L M40403 and coenzyme Q10 compared with cochlear explants without added M40403 and coenzyme Q10. CONCLUSION: These experimental results suggest that inappropriate application of antioxidants can cause severe damage to normal cochlear HCs.


Assuntos
Acetilcisteína , Antioxidantes , Apoptose , Sobrevivência Celular , Oligopeptídeos , Estresse Oxidativo , Ubiquinona , Ubiquinona/análogos & derivados , Antioxidantes/farmacologia , Acetilcisteína/farmacologia , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Cóclea/efeitos dos fármacos , Cóclea/patologia , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/patologia , Contagem de Células
5.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38276966

RESUMO

Cell shape is a powerful readout of cell state, fate and function. We describe a custom workflow to perform semi-automated, 3D cell and nucleus segmentation, and spherical harmonics and principal components analysis to distill cell and nuclear shape variation into discrete biologically meaningful parameters. We apply these methods to analyze shape in the neuromast cells of the zebrafish lateral line system, finding that shapes vary with cell location and identity. The distinction between hair cells and support cells accounted for much of the variation, which allowed us to train classifiers to predict cell identity from shape features. Using transgenic markers for support cell subpopulations, we found that subtypes had different shapes from each other. To investigate how loss of a neuromast cell type altered cell shape distributions, we examined atoh1a mutants that lack hair cells. We found that mutant neuromasts lacked the cell shape phenotype associated with hair cells, but did not exhibit a mutant-specific cell shape. Our results demonstrate the utility of using 3D cell shape features to characterize, compare and classify cells in a living developing organism.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Peixe-Zebra/genética , Forma Celular , Animais Geneticamente Modificados , Células Ciliadas Auditivas/fisiologia
6.
Mol Biol Rep ; 51(1): 217, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281217

RESUMO

BACKGROUND: In lower vertebrates like fish, the inner ear and lateral line hair cells (HCs) can regenerate after being damaged by proliferation/differentiation of supporting cells (SCs). However, the HCs of mouse cochlear could only regenerate within one to two weeks after birth but not for adults. METHODS AND RESULTS: To better understand the molecular foundations, we collected several public single-cell RNA sequencing (scRNAseq) data of mouse cochleae from E14 to P33 and extracted the prosensory and supporting cells specifically. Gene Set Enrichment Analysis (GSEA) results revealed a down-regulation of genes in Notch signaling pathway during postnatal stages (P7 and P33). We also identified 107 time-course co-expression genes correlated with developmental stage and predicated that EZH2 and KLF15 may be the key transcriptional regulators for these genes. Expressions of candidate target genes of EZH2 and KLF15 were also found in supporting cells of the auditory epithelia in chick and the neuromasts in zebrafish. Furthermore, inhibiting EZH2 suppressed regeneration of hair cells in zebrafish neuromasts and altered expressions of some developmental stage correlated genes. CONCLUSIONS: Our results extended the understanding for molecular basis of hair cell regeneration ability and revealed the potential role of Ezh2 in it.


Assuntos
Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Proliferação de Células/genética , Células Ciliadas Auditivas/metabolismo , Transdução de Sinais/fisiologia
7.
Biochem Biophys Res Commun ; 699: 149551, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38277730

RESUMO

V-ATPase is an ATP hydrolysis-driven proton pump involved in the acidification of intracellular organelles and systemic acid-base homeostasis through H+ secretion in the renal collecting ducts. V-ATPase dysfunction is associated with hereditary distal renal tubular acidosis (dRTA). ATP6V1B1 encodes the B1 subunit of V-ATPase that is integral to ATP hydrolysis and subsequent H+ transport. Patients with pathogenic ATP6V1B1 mutations often exhibit an early onset of sensorineural hearing loss. However, the mechanisms underlying this association remain unclear. We employed morpholino oligonucleotide-mediated knockdown and CRISPR/Cas9 gene editing to generate Atp6v1ba-deficient (atp6v1ba-/-) zebrafish as an ortholog model for ATP6V1B1. The atp6v1ba-/- zebrafish exhibited systemic acidosis and significantly smaller otoliths compared to wild-type siblings. Moreover, deficiency in Atp6v1ba led to degeneration of inner ear hair cells, with ultrastructural changes indicative of autophagy. Our findings indicate a critical role of ATP6V1B1 in regulating lysosomal pH and autophagy in hair cells, and the results provide insights into the pathophysiology of sensorineural hearing loss in dRTA. Furthermore, this study demonstrates that the atp6v1ba-/- zebrafish model is a valuable tool for further investigation into disease mechanisms and potential therapies for acidosis-related hearing impairment.


Assuntos
Acidose Tubular Renal , Acidose , Perda Auditiva Neurossensorial , Compostos Organometálicos , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Peixe-Zebra/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Mutação , Acidose Tubular Renal/genética , Células Ciliadas Auditivas/patologia , Concentração de Íons de Hidrogênio , Cabelo/metabolismo , Trifosfato de Adenosina
8.
J Appl Toxicol ; 44(2): 235-244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37650462

RESUMO

Gentamicin (GM) is one of the commonly used antibiotics in the aminoglycoside class but is ototoxic, which constantly impacts the quality of human life. Pyrroloquinoline quinone (PQQ) as a redox cofactor produced by bacteria was found in soil and foods that exert an antioxidant and redox modulator. It is well documented that the PQQ can alleviate inflammatory responses and cytotoxicity. However, our understanding of PQQ in ototoxicity remains unclear. We reported that PQQ could protect against GM-induced ototoxicity in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in vitro. To evaluate reactive oxygen species (ROS) production and mitochondrial function, ROS and JC-1 staining, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) measurements in living cells, mitochondrial dynamics analysis was performed. GM-mediated damage was performed by reducing the production of ROS and inhibiting mitochondria biogenesis and dynamics. PQQ ameliorated the cellular oxidative stress and recovered mitochondrial membrane potential, facilitating the recovery of mitochondrial biogenesis and dynamics. Our in vitro findings improve our understanding of the GM-induced ototoxicity with therapeutic implications for PQQ.


Assuntos
Gentamicinas , Ototoxicidade , Humanos , Gentamicinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cofator PQQ/farmacologia , Cofator PQQ/uso terapêutico , Cofator PQQ/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/prevenção & controle , Ototoxicidade/metabolismo , Células Ciliadas Auditivas/metabolismo , Antibacterianos/metabolismo , Apoptose
9.
Dev Cell ; 59(2): 280-291.e5, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38128539

RESUMO

Hearing loss is a chronic disease affecting millions of people worldwide, yet no restorative treatment options are available. Although non-mammalian species can regenerate their auditory sensory hair cells, mammals cannot. Birds retain facultative stem cells known as supporting cells that engage in proliferative regeneration when surrounding hair cells die. Here, we investigated gene expression changes in chicken supporting cells during auditory hair cell death. This identified a pathway involving the receptor F2RL1, HBEGF, EGFR, and ERK signaling. We propose a cascade starting with the proteolytic activation of F2RL1, followed by matrix-metalloprotease-mediated HBEGF shedding, and culminating in EGFR-mediated ERK signaling. Each component of this cascade is essential for supporting cell S-phase entry in vivo and is integral for hair cell regeneration. Furthermore, STAT3-phosphorylation converges with this signaling toward upregulation of transcription factors ATF3, FOSL2, and CREM. Our findings could provide a basis for designing treatments for hearing and balance disorders.


Assuntos
Células Ciliadas Auditivas , Perda Auditiva , Humanos , Animais , Transdução de Sinais/fisiologia , Galinhas/metabolismo , Perda Auditiva/metabolismo , Receptores ErbB/metabolismo , Mamíferos/metabolismo
10.
Hear Res ; 441: 108916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103445

RESUMO

Flat epithelium (FE) is a condition characterized by the loss of both hair cells (HCs) and supporting cells and the transformation of the organ of Corti into a simple flat or cuboidal epithelium, which can occur after severe cochlear insults. The transcription factors Gfi1, Atoh1, Pou4f3, and Six1 (GAPS) play key roles in HC differentiation and survival in normal ears. Previous work using a single transcription factor, Atoh1, to induce HC regeneration in mature ears in vivo usually produced very few cells and failed to produce HCs in severely damaged organs of Corti, especially those with FE. Studies in vitro suggested combinations of transcription factors may be more effective than any single factor, thus the current study aims to examine the effect of co-overexpressing GAPS genes in deafened mature guinea pig cochleae with FE. Deafening was achieved through the infusion of neomycin into the perilymph, leading to the formation of FE and substantial degeneration of nerve fibers. Seven days post neomycin treatment, adenovirus vectors carrying GAPS were injected into the scala media and successfully expressed in the FE. One or two months following GAPS inoculation, cells expressing Myosin VIIa were observed in regions under the FE (located at the scala tympani side of the basilar membrane), rather than within the FE. The number of cells, which we define as induced HCs (iHCs), was not significantly different between one and two months, but the larger N at two months made it more apparent that there were significantly more iHCs in GAPS treated animals than in controls. Additionally, qualitative observations indicated that ears with GAPS gene expression in the FE had more nerve fibers than FE without the treatment. In summary, our results showed that co-overexpression of GAPS enhances the potential for HC regeneration in a severe lesion model of FE.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição , Animais , Cobaias , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Ciliadas Auditivas/patologia , Epitélio/metabolismo , Cóclea/metabolismo , Neomicina
11.
Biol. Res ; 57: 3-3, 2024. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1550058

RESUMO

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Assuntos
Neomicina/metabolismo , Neomicina/toxicidade , Exossomos/metabolismo , Autofagia/fisiologia , Células Ciliadas Auditivas
12.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139245

RESUMO

Cisplatin is a chemotherapeutic drug for the treatment of several solid tumors, whose use is limited by its nephrotoxicity, neurotoxicity, ototoxicity, and development of resistance. The toxicity is caused by DNA cross-linking, increase in reactive oxygen species and/or depletion of cell antioxidant defenses. The aim of the work was to study the effect of antioxidant compounds (Lisosan G, Taurisolo®) or hydrogen sulfide (H2S)-releasing compounds (erucin) in the auditory HEI-OC1 cell line treated with cisplatin. Cell viability was determined using the MTT assay. Caspase and sphingomyelinase activities were measured by fluorometric and colorimetric methods, respectively. Expression of transcription factors, apoptosis hallmarks and genes codifying for antioxidant response proteins were measured by Western blot and/or RT-qPCR. Lisosan G, Taurisolo® and erucin did not show protective effects. Sodium hydrosulfide (NaHS), a donor of H2S, increased the viability of cisplatin-treated cells and the transcription of heme oxygenase 1, superoxide dismutase 2, NAD(P)H quinone dehydrogenase type 1 and the catalytic subunit of glutamate-cysteine ligase and decreased reactive oxygen species (ROS), the Bax/Bcl2 ratio, caspase-3, caspase-8 and acid sphingomyelinase activity. Therefore, NaHS might counteract the cytotoxic effect of cisplatin by increasing the antioxidant response and by reducing ROS levels and caspase and acid sphingomyelinase activity.


Assuntos
Antineoplásicos , Cisplatino , Cisplatino/farmacologia , Cisplatino/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Células Ciliadas Auditivas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Apoptose , Caspases/metabolismo , Suplementos Nutricionais , Sobrevivência Celular
13.
Elife ; 122023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982489

RESUMO

The MRTF-SRF pathway has been extensively studied for its crucial role in driving the expression of a large number of genes involved in actin cytoskeleton of various cell types. However, the specific contribution of MRTF-SRF in hair cells remains unknown. In this study, we showed that hair cell-specific deletion of Srf or Mrtfb, but not Mrtfa, leads to similar defects in the development of stereocilia dimensions and the maintenance of cuticular plate integrity. We used fluorescence-activated cell sorting-based hair cell RNA-Seq analysis to investigate the mechanistic underpinnings of the changes observed in Srf and Mrtfb mutants, respectively. Interestingly, the transcriptome analysis revealed distinct profiles of genes regulated by Srf and Mrtfb, suggesting different transcriptional regulation mechanisms of actin cytoskeleton activities mediated by Srf and Mrtfb. Exogenous delivery of calponin 2 using Adeno-associated virus transduction in Srf mutants partially rescued the impairments of stereocilia dimensions and the F-actin intensity of cuticular plate, suggesting the involvement of Cnn2, as an Srf downstream target, in regulating the hair bundle morphology and cuticular plate actin cytoskeleton organization. Our study uncovers, for the first time, the unexpected differential transcriptional regulation of actin cytoskeleton mediated by Srf and Mrtfb in hair cells, and also demonstrates the critical role of SRF-CNN2 in modulating actin dynamics of the stereocilia and cuticular plate, providing new insights into the molecular mechanism underlying hair cell development and maintenance.


Assuntos
Citoesqueleto de Actina , Células Ciliadas Auditivas , Células Ciliadas Auditivas/fisiologia , Citoesqueleto de Actina/metabolismo , Estereocílios/metabolismo , Actinas/genética , Actinas/metabolismo , Regulação da Expressão Gênica
14.
Sci Rep ; 13(1): 16741, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798459

RESUMO

Pathological conditions in cochlea, such as ototoxicity, acoustic trauma, and age-related cochlear degeneration, induce cell death in the organ of Corti and degeneration of the spiral ganglion neurons (SGNs). Although macrophages play an essential role after cochlear injury, its role in the SGNs is limitedly understood. We analyzed the status of macrophage activation and neuronal damage in the spiral ganglion after kanamycin-induced unilateral hearing loss in mice. The number of ionized calcium-binding adapter molecule 1 (Iba1)-positive macrophages increased 3 days after unilateral kanamycin injection. Macrophages showed larger cell bodies, suggesting activation status. Interestingly, the number of activating transcription factor 3 (ATF3)-positive-neurons, an indicator of early neuronal damage, also increased at the same timing. In the later stages, the number of macrophages decreased, and the cell bodies became smaller, although the number of neuronal deaths increased. To understand their role in neuronal damage, macrophages were depleted via intraperitoneal injection of clodronate liposome 24 h after kanamycin injection. Macrophage depletion decreased the number of ATF3-positive neurons at day 3 and neuronal death at day 28 in the spiral ganglion following kanamycin injection. Our results suggest that suppression of inflammation by clodronate at early timing can protect spiral ganglion damage following cochlear insult.


Assuntos
Perda Auditiva Unilateral , Gânglio Espiral da Cóclea , Camundongos , Animais , Gânglio Espiral da Cóclea/metabolismo , Canamicina/toxicidade , Perda Auditiva Unilateral/patologia , Ácido Clodrônico/metabolismo , Células Ciliadas Auditivas/metabolismo , Cóclea , Neurônios , Macrófagos
15.
Biomed Pharmacother ; 166: 115399, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657258

RESUMO

Over-production of reactive oxygen species (ROS) in the inner ear can be triggered by a variety of pathological events identified in animal models after traumatic noise exposure. Our previous research found that inhibition of the AMP-activated protein kinase alpha subunit (AMPKα) protects against noise-induced cochlear hair cell loss and hearing loss by reducing ROS accumulation. However, the molecular pathway through which AMPKα exerts its antioxidative effect is still unclear. In this study, we have investigated a potential target of AMPKα and ROS, cystic fibrosis transmembrane conductance regulator (CFTR), and the protective effect against noise-induced hair cell loss of an FDA-approved CFTR potentiator, ivacaftor, in FVB/NJ mice, mouse explant cultures, and HEI-OC1 cells. We found that noise exposure increases phosphorylation of CFTR at serine 737 (p-CFTR, S737), which reduces wildtype CFTR function, resulting in oxidative stress in cochlear sensory hair cells. Pretreatment with a single dose of ivacaftor maintains CFTR function by preventing noise-increased p-CFTR (S737). Furthermore, ivacaftor treatment increases nuclear factor E2-related factor 2 (Nrf2) expression, diminishes ROS formation, and attenuates noise-induced hair cell loss and hearing loss. Additionally, inhibition of noise-induced AMPKα activation by compound C also diminishes p-CFTR (S737) expression. In line with these in-vivo results, administration of hydrogen peroxide to cochlear explants or HEI-OC1 cells increases p-CFTR (S737) expression and induces sensory hair cell or HEI-OC1 cell damage, while application of ivacaftor halts these effects. Although ivacaftor increases Nrf2 expression and reduces ROS accumulation, cotreatment with ML385, an Nrf2 inhibitor, abolishes the protective effects of ivacaftor against hydrogen-peroxide-induced HEI-OC1 cell death. Our results indicate that noise-induced sensory hair cell damage is associated with p-CFTR. Ivacaftor has potential for treatment of noise-induced hearing loss by maintaining CFTR function and increasing Nrf2 expression for support of redox homeostasis in sensory hair cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Espécies Reativas de Oxigênio , Estresse Oxidativo , Células Ciliadas Auditivas , Proteínas Quinases Ativadas por AMP , Alopecia , Anticorpos , Oxirredução
16.
Arch Toxicol ; 97(11): 2955-2967, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37608195

RESUMO

The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) gene encodes rate-limiting enzyme in cholesterol biosynthesis, which is related to cell proliferation and mitochondrial function. The present study was designed to explore the expression of HMGCR in murine cochlear hair cells and HEI-OC1 cells and the possible mechanisms underpinning the actions of HMGCR in cisplatin-induced ototoxicity, with special attention given to p38 mitogen-activated protein kinase (MAPK) activities in vitro. The expressions of HMGCR, p-p38, cleaved caspase-3 and LC3B was measured by immunofluorescence and western blot. JC-1 staining and MitoSOX Red were used to detect mitochondria membrane potential (MMP) and reactive oxygen species (ROS) levels respectively. The apoptosis of auditory cells was assessed by TUNEL staining and flow cytometry. Protein levels of bcl2/bax and beclin1 were examined by western blot. We found that HMGCR was widely expressed in the auditory cells, of both neonatal mice and 2-month-old mice, in cytoplasm, nucleus and stereocilia. Moreover, 30 µM cisplatin elicited the formation of ROS, which, in turn, led to HMGCR reduction, activating p38 kinase-related apoptosis and autophagy in auditory cells. Meanwhile, co-treatment with ROS scavenger at a concentration of 2 mM, N-acetyl-L-cysteine (NAC), could alleviate the aforementioned changes. In addition, HMGCR silencing resulted in higher p38 MAPK-mediated apoptosis and autophagy under cisplatin injury. Taken together, we demonstrate that, for the first time, that HMGCR is expressed in the cochlear. Furthermore, HMGCR exerts protective benefit on auditory cells against cisplatin-mediated injury stimulated by ROS, culminating in regulation of p38 MAPK-dependent apoptosis and autophagy.


Assuntos
Ototoxicidade , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Cisplatino/toxicidade , Ototoxicidade/etiologia , Ototoxicidade/prevenção & controle , Espécies Reativas de Oxigênio , Transdução de Sinais , Células Ciliadas Auditivas
17.
Neurobiol Dis ; 183: 106176, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263384

RESUMO

Aminoglycoside antibiotics (AGAs) are widely used in life-threatening infections, but they accumulate in cochlear hair cells (HCs) and result in hearing loss. Increases in adenosine triphosphate (ATP) concentrations and P2X7 receptor expression were observed after neomycin treatment. Here, we demonstrated that P2X7 receptor, which is a non-selective cation channel that is activated by high ATP concentrations, may participate in the process through which AGAs enter hair cells. Using transgenic knockout mice, we found that P2X7 receptor deficiency protects HCs against neomycin-induced injury in vitro and in vivo. Subsequently, we used fluorescent gentamicin-Fluor 594 to study the uptake of AGAs and found fluorescence labeling in wild-type mice but not in P2rx7-/- mice in vitro. In addition, knocking-out P2rx7 did not significantly alter the HC count and auditory signal transduction, but it did inhibit mitochondria-dependent oxidative stress and apoptosis in the cochlea after neomycin exposure. We thus conclude that the P2X7 receptor may be linked to the entry of AGAs into HCs and is likely to be a therapeutic target for auditory HC protection.


Assuntos
Aminoglicosídeos , Ototoxicidade , Animais , Camundongos , Aminoglicosídeos/toxicidade , Aminoglicosídeos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Ototoxicidade/metabolismo , Antibacterianos/toxicidade , Neomicina/toxicidade , Neomicina/metabolismo , Células Ciliadas Auditivas/metabolismo , Cóclea , Trifosfato de Adenosina/metabolismo
18.
Biochem Pharmacol ; 212: 115575, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37334787

RESUMO

Age-related hearing loss (ARHL) is a most widespread neurodegenerative disease affecting the elderly population, but effective pharmacological treatments remain limited. Curcumin is a bioactive compound of Curcuma longa with antioxidant properties. Herein, we looked into the effects of curcumin on the H2O2-induced oxidative stress in cochlear hair cells and hearing function in an ARHL animal model (C57BL/6J mice). We found that pretreatment of curcumin could attenuate H2O2-induced apoptosis and cell senescence in auditory hair cells and prevent mitochondrial function dysfunction. More specifically, Western blot and luciferase activity assay showed that curcumin activated the nuclear translocation of Nrf2, which in turn triggered the activation of its downstream target gene Heme Oxygenase1 (HO-1). The enhanced Nrf2 and HO-1 activity by curcumin was blocked by the AKT inhibitor LY294002, indicating the protective effect of curcumin was mainly achieved by activating Nrf2/HO-1 through the AKT pathway. Furthermore, the knockdown of Nrf2 with siRNA diminished the protective effects of Nrf2 against apoptosis and senescence, consolidating the pivotal role of Nrf2 in the protective effect of curcumin on auditory hair cells. More importantly, curcumin (10 mg/kg/d) could attenuate progressive hearing loss in C57BL/6J mice, as evident from the reduced threshold of auditory nerve brainstem response. Administration of curcumin also elevated the expression of Nrf2 and reduced the expression of cleaved-caspase-3, p21, and γ-H2AX in cochlear. This study is the first to demonstrate that curcumin can prevent oxidative stress-induced auditory hair cell degeneration through Nrf2 activation, highlighting its potential therapeutic value in preventing ARHL.


Assuntos
Curcumina , Perda Auditiva , Doenças Neurodegenerativas , Idoso , Camundongos , Animais , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Camundongos Endogâmicos C57BL , Perda Auditiva/prevenção & controle , Apoptose , Células Ciliadas Auditivas/metabolismo
19.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373150

RESUMO

Damages of sensory hair cells (HCs) are mainly responsible for sensorineural hearing loss, however, its pathological mechanism is not yet fully understood due to the fact that many potential deafness genes remain unidentified. N-myc downstream-regulated gene 2 (ndrg2) is commonly regarded as a tumor suppressor and a cell stress-responsive gene extensively involved in cell proliferation, differentiation, apoptosis and invasion, while its roles in zebrafish HC morphogenesis and hearing remains unclear. Results of this study suggested that ndrg2 was highly expressed in the HCs of the otic vesicle and neuromasts via in situ hybridization and single-cell RNA sequencing. Ndrg2 loss-of-function larvae showed decreased crista HCs, shortened cilia, and reduced neuromasts and functional HCs, which could be rescued by the microinjection of ndrg2 mRNA. Moreover, ndrg2 deficiency induced attenuated startle response behaviors to sound vibration stimuli. Mechanistically, there were no detectable HC apoptosis and supporting cell changes in the ndrg2 mutants, and HCs were capable of recovering by blocking the Notch signaling pathway, suggesting that ndrg2 was implicated in HC differentiation mediated by Notch. Overall, our study demonstrates that ndrg2 plays crucial roles in HC development and auditory sensory function utilizing the zebrafish model, which provides new insights into the identification of potential deafness genes and regulation mechanism of HC development.


Assuntos
Surdez , Proteínas Supressoras de Tumor , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proliferação de Células , Surdez/metabolismo , Células Ciliadas Auditivas/metabolismo , Audição , Neurogênese/genética , Peixe-Zebra/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Peixe-Zebra/genética
20.
Arch Toxicol ; 97(7): 1943-1961, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195449

RESUMO

Hair cell (HC) loss by epithelial extrusion has been described to occur in the rodent vestibular system during chronic 3,3'-iminodipropionitrile (IDPN) ototoxicity. This is preceded by dismantlement of the calyceal junction in the contact between type I HC (HCI) and calyx afferent terminals. Here, we evaluated whether these phenomena have wider significance. First, we studied rats receiving seven different doses of streptomycin, ranging from 100 to 800 mg/kg/day, for 3-8 weeks. Streptomycin caused loss of vestibular function associated with partial loss of HCI and decreased expression of contactin-associated protein (CASPR1), denoting calyceal junction dismantlement, in the calyces encasing the surviving HCI. Additional molecular and ultrastructural data supported the conclusion that HC-calyx detachment precede HCI loss by extrusion. Animals allowed to survive after the treatment showed functional recuperation and rebuilding of the calyceal junction. Second, we evaluated human sensory epithelia obtained during therapeutic labyrinthectomies and trans-labyrinthine tumour excisions. Some samples showed abnormal CASPR1 label strongly suggestive of calyceal junction dismantlement. Therefore, reversible dismantlement of the vestibular calyceal junction may be a common response triggered by chronic stress, including ototoxic stress, before HCI loss. This may partly explain clinical observations of reversion in function loss after aminoglycoside exposure.


Assuntos
Células Ciliadas Vestibulares , Vestíbulo do Labirinto , Humanos , Ratos , Animais , Estreptomicina/toxicidade , Vestíbulo do Labirinto/patologia , Epitélio/patologia , Células Ciliadas Vestibulares/patologia , Células Ciliadas Auditivas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA